MakeItFrom.com
Menu (ESC)

C34500 Brass vs. ASTM A387 Grade 12 Steel

C34500 brass belongs to the copper alloys classification, while ASTM A387 grade 12 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C34500 brass and the bottom bar is ASTM A387 grade 12 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 12 to 28
25
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 220 to 260
300 to 330
Tensile Strength: Ultimate (UTS), MPa 340 to 430
470 to 520
Tensile Strength: Yield (Proof), MPa 120 to 180
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
430
Melting Completion (Liquidus), °C 910
1470
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
44
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 29
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
2.8
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.6
Embodied Energy, MJ/kg 45
21
Embodied Water, L/kg 320
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
98 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 160
180 to 250
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12 to 15
16 to 18
Strength to Weight: Bending, points 13 to 16
17 to 18
Thermal Diffusivity, mm2/s 37
12
Thermal Shock Resistance, points 11 to 14
14 to 15

Alloy Composition

Carbon (C), % 0
0.050 to 0.17
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.15
97 to 98.2
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0.4 to 0.65
Molybdenum (Mo), % 0
0.45 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.15 to 0.4
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 32 to 36.5
0
Residuals, % 0 to 0.4
0