MakeItFrom.com
Menu (ESC)

C34500 Brass vs. AWS ER120S-1

C34500 brass belongs to the copper alloys classification, while AWS ER120S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C34500 brass and the bottom bar is AWS ER120S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 12 to 28
17
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 340 to 430
930
Tensile Strength: Yield (Proof), MPa 120 to 180
830

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Melting Completion (Liquidus), °C 910
1460
Melting Onset (Solidus), °C 890
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
46
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 29
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 24
4.2
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.9
Embodied Energy, MJ/kg 45
25
Embodied Water, L/kg 320
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
150
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 160
1850
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12 to 15
33
Strength to Weight: Bending, points 13 to 16
27
Thermal Diffusivity, mm2/s 37
13
Thermal Shock Resistance, points 11 to 14
27

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
0 to 0.6
Copper (Cu), % 62 to 65
0 to 0.25
Iron (Fe), % 0 to 0.15
92.4 to 96.1
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
1.4 to 1.8
Molybdenum (Mo), % 0
0.3 to 0.65
Nickel (Ni), % 0
2.0 to 2.8
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0.25 to 0.6
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 32 to 36.5
0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5