MakeItFrom.com
Menu (ESC)

C34500 Brass vs. EN 1.0425 Steel

C34500 brass belongs to the copper alloys classification, while EN 1.0425 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C34500 brass and the bottom bar is EN 1.0425 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 12 to 28
24
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 220 to 260
300
Tensile Strength: Ultimate (UTS), MPa 340 to 430
470
Tensile Strength: Yield (Proof), MPa 120 to 180
260

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 910
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
50
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 29
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
2.2
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.5
Embodied Energy, MJ/kg 45
20
Embodied Water, L/kg 320
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
98
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 160
180
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12 to 15
17
Strength to Weight: Bending, points 13 to 16
17
Thermal Diffusivity, mm2/s 37
13
Thermal Shock Resistance, points 11 to 14
15

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 62 to 65
0 to 0.3
Iron (Fe), % 0 to 0.15
96.9 to 99.18
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0.8 to 1.4
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.020
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 32 to 36.5
0
Residuals, % 0 to 0.4
0