MakeItFrom.com
Menu (ESC)

C34500 Brass vs. C48200 Brass

Both C34500 brass and C48200 brass are copper alloys. They have a very high 96% of their average alloy composition in common.

For each property being compared, the top bar is C34500 brass and the bottom bar is C48200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 12 to 28
15 to 40
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 40
40
Shear Strength, MPa 220 to 260
260 to 300
Tensile Strength: Ultimate (UTS), MPa 340 to 430
400 to 500
Tensile Strength: Yield (Proof), MPa 120 to 180
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 170
170
Maximum Temperature: Mechanical, °C 120
120
Melting Completion (Liquidus), °C 910
900
Melting Onset (Solidus), °C 890
890
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
26
Electrical Conductivity: Equal Weight (Specific), % IACS 29
29

Otherwise Unclassified Properties

Base Metal Price, % relative 24
23
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 45
47
Embodied Water, L/kg 320
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
61 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 160
120 to 500
Stiffness to Weight: Axial, points 7.1
7.2
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 12 to 15
14 to 17
Strength to Weight: Bending, points 13 to 16
15 to 17
Thermal Diffusivity, mm2/s 37
38
Thermal Shock Resistance, points 11 to 14
13 to 16

Alloy Composition

Copper (Cu), % 62 to 65
59 to 62
Iron (Fe), % 0 to 0.15
0 to 0.1
Lead (Pb), % 1.5 to 2.5
0.4 to 1.0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 32 to 36.5
35.5 to 40.1
Residuals, % 0
0 to 0.4

Comparable Variants