MakeItFrom.com
Menu (ESC)

C34500 Brass vs. N07750 Nickel

C34500 brass belongs to the copper alloys classification, while N07750 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C34500 brass and the bottom bar is N07750 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 12 to 28
25
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 220 to 260
770
Tensile Strength: Ultimate (UTS), MPa 340 to 430
1200
Tensile Strength: Yield (Proof), MPa 120 to 180
820

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
960
Melting Completion (Liquidus), °C 910
1430
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 29
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
60
Density, g/cm3 8.2
8.4
Embodied Carbon, kg CO2/kg material 2.6
10
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
270
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 160
1770
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 12 to 15
40
Strength to Weight: Bending, points 13 to 16
30
Thermal Diffusivity, mm2/s 37
3.3
Thermal Shock Resistance, points 11 to 14
36

Alloy Composition

Aluminum (Al), % 0
0.4 to 1.0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 62 to 65
0 to 0.5
Iron (Fe), % 0 to 0.15
5.0 to 9.0
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
70 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
2.3 to 2.8
Zinc (Zn), % 32 to 36.5
0
Residuals, % 0 to 0.4
0