MakeItFrom.com
Menu (ESC)

C34500 Brass vs. S44626 Stainless Steel

C34500 brass belongs to the copper alloys classification, while S44626 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C34500 brass and the bottom bar is S44626 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 12 to 28
23
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
80
Shear Strength, MPa 220 to 260
340
Tensile Strength: Ultimate (UTS), MPa 340 to 430
540
Tensile Strength: Yield (Proof), MPa 120 to 180
350

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 910
1440
Melting Onset (Solidus), °C 890
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
14
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 45
42
Embodied Water, L/kg 320
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
110
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 160
300
Stiffness to Weight: Axial, points 7.1
15
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 12 to 15
19
Strength to Weight: Bending, points 13 to 16
19
Thermal Diffusivity, mm2/s 37
4.6
Thermal Shock Resistance, points 11 to 14
18

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
25 to 27
Copper (Cu), % 62 to 65
0 to 0.2
Iron (Fe), % 0 to 0.15
68.1 to 74.1
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 0.75
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 32 to 36.5
0
Residuals, % 0 to 0.4
0