MakeItFrom.com
Menu (ESC)

C35000 Brass vs. 6066 Aluminum

C35000 brass belongs to the copper alloys classification, while 6066 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C35000 brass and the bottom bar is 6066 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
70
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 340 to 650
160 to 400

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 920
650
Melting Onset (Solidus), °C 890
560
Specific Heat Capacity, J/kg-K 380
890
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
40
Electrical Conductivity: Equal Weight (Specific), % IACS 29
130

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 8.1
2.8
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1160

Common Calculations

Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
49
Strength to Weight: Axial, points 12 to 22
16 to 39
Strength to Weight: Bending, points 13 to 21
23 to 43
Thermal Diffusivity, mm2/s 37
61
Thermal Shock Resistance, points 11 to 22
6.9 to 17

Alloy Composition

Aluminum (Al), % 0
93 to 97
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 60 to 63
0.7 to 1.2
Iron (Fe), % 0 to 0.1
0 to 0.5
Lead (Pb), % 0.8 to 2.0
0
Magnesium (Mg), % 0
0.8 to 1.4
Manganese (Mn), % 0
0.6 to 1.1
Silicon (Si), % 0
0.9 to 1.8
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 34.5 to 39.2
0 to 0.25
Residuals, % 0
0 to 0.15