MakeItFrom.com
Menu (ESC)

C35300 Brass vs. AWS E316H

C35300 brass belongs to the copper alloys classification, while AWS E316H belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C35300 brass and the bottom bar is AWS E316H.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
78
Tensile Strength: Ultimate (UTS), MPa 340 to 650
580

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Melting Completion (Liquidus), °C 910
1440
Melting Onset (Solidus), °C 890
1390
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 21
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
20
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.6
4.0
Embodied Energy, MJ/kg 45
55
Embodied Water, L/kg 320
160

Common Calculations

Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12 to 22
21
Strength to Weight: Bending, points 13 to 21
20
Thermal Diffusivity, mm2/s 38
4.0
Thermal Shock Resistance, points 11 to 22
15

Alloy Composition

Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 60 to 63
0 to 0.75
Iron (Fe), % 0 to 0.1
58.6 to 69.5
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
11 to 14
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 33.9 to 38.5
0
Residuals, % 0 to 0.5
0