MakeItFrom.com
Menu (ESC)

C35300 Brass vs. EN 1.3967 Stainless Steel

C35300 brass belongs to the copper alloys classification, while EN 1.3967 stainless steel belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (15, in this case) are not shown.

For each property being compared, the top bar is C35300 brass and the bottom bar is EN 1.3967 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
79
Tensile Strength: Ultimate (UTS), MPa 340 to 650
690

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1070
Melting Completion (Liquidus), °C 910
1430
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 380
470
Thermal Expansion, µm/m-K 21
16

Otherwise Unclassified Properties

Base Metal Price, % relative 23
25
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.6
4.8
Embodied Energy, MJ/kg 45
66
Embodied Water, L/kg 320
180

Common Calculations

Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12 to 22
24
Strength to Weight: Bending, points 13 to 21
22
Thermal Shock Resistance, points 11 to 22
15

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 21.5
Copper (Cu), % 60 to 63
0
Iron (Fe), % 0 to 0.1
50.3 to 57.8
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
4.0 to 6.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0
15 to 17
Niobium (Nb), % 0
0 to 0.25
Nitrogen (N), % 0
0.2 to 0.35
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 33.9 to 38.5
0
Residuals, % 0 to 0.5
0