MakeItFrom.com
Menu (ESC)

C35600 Brass vs. EN AC-43100 Aluminum

C35600 brass belongs to the copper alloys classification, while EN AC-43100 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C35600 brass and the bottom bar is EN AC-43100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
71
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 39
27
Tensile Strength: Ultimate (UTS), MPa 340 to 650
180 to 270

Thermal Properties

Latent Heat of Fusion, J/g 170
540
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 900
600
Melting Onset (Solidus), °C 890
590
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 120
140
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
37
Electrical Conductivity: Equal Weight (Specific), % IACS 29
130

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 8.1
2.6
Embodied Carbon, kg CO2/kg material 2.6
7.8
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1070

Common Calculations

Stiffness to Weight: Axial, points 7.0
15
Stiffness to Weight: Bending, points 19
54
Strength to Weight: Axial, points 11 to 22
20 to 29
Strength to Weight: Bending, points 13 to 21
28 to 36
Thermal Diffusivity, mm2/s 38
60
Thermal Shock Resistance, points 11 to 22
8.6 to 12

Alloy Composition

Aluminum (Al), % 0
86.9 to 90.8
Copper (Cu), % 60 to 63
0 to 0.1
Iron (Fe), % 0 to 0.1
0 to 0.55
Lead (Pb), % 2.0 to 3.0
0 to 0.050
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0
0 to 0.45
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0
9.0 to 11
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 33.4 to 38
0 to 0.1
Residuals, % 0
0 to 0.15