MakeItFrom.com
Menu (ESC)

C35600 Brass vs. C81400 Copper

Both C35600 brass and C81400 copper are copper alloys. They have 62% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C35600 brass and the bottom bar is C81400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Poisson's Ratio 0.31
0.34
Rockwell B Hardness 53 to 91
69
Shear Modulus, GPa 39
41
Tensile Strength: Ultimate (UTS), MPa 340 to 650
370

Thermal Properties

Latent Heat of Fusion, J/g 170
210
Maximum Temperature: Mechanical, °C 120
200
Melting Completion (Liquidus), °C 900
1090
Melting Onset (Solidus), °C 890
1070
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 120
260
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
60
Electrical Conductivity: Equal Weight (Specific), % IACS 29
61

Otherwise Unclassified Properties

Base Metal Price, % relative 23
33
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 45
45
Embodied Water, L/kg 320
310

Common Calculations

Stiffness to Weight: Axial, points 7.0
7.3
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 11 to 22
11
Strength to Weight: Bending, points 13 to 21
13
Thermal Diffusivity, mm2/s 38
75
Thermal Shock Resistance, points 11 to 22
13

Alloy Composition

Beryllium (Be), % 0
0.020 to 0.1
Chromium (Cr), % 0
0.6 to 1.0
Copper (Cu), % 60 to 63
98.4 to 99.38
Iron (Fe), % 0 to 0.1
0
Lead (Pb), % 2.0 to 3.0
0
Zinc (Zn), % 33.4 to 38
0
Residuals, % 0
0 to 0.5