MakeItFrom.com
Menu (ESC)

C36000 Brass vs. 7129 Aluminum

C36000 brass belongs to the copper alloys classification, while 7129 Aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C36000 brass and the bottom bar is 7129 Aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
69
Elongation at Break, % 5.8 to 23
9.0 to 9.1
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 39
26
Shear Strength, MPa 210 to 310
250 to 260
Tensile Strength: Ultimate (UTS), MPa 330 to 530
430
Tensile Strength: Yield (Proof), MPa 140 to 260
380 to 390

Thermal Properties

Latent Heat of Fusion, J/g 170
380
Maximum Temperature: Mechanical, °C 120
180
Melting Completion (Liquidus), °C 900
630
Melting Onset (Solidus), °C 890
510
Specific Heat Capacity, J/kg-K 380
880
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
40
Electrical Conductivity: Equal Weight (Specific), % IACS 29
120

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 8.2
2.9
Embodied Carbon, kg CO2/kg material 2.6
8.3
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 62
37 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 340
1050 to 1090
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 19
47
Strength to Weight: Axial, points 11 to 18
41
Strength to Weight: Bending, points 13 to 18
43 to 44
Thermal Diffusivity, mm2/s 37
58
Thermal Shock Resistance, points 11 to 18
19

Alloy Composition

Aluminum (Al), % 0
91 to 94
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 60 to 63
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.35
0 to 0.3
Lead (Pb), % 2.5 to 3.7
0
Magnesium (Mg), % 0
1.3 to 2.0
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 32.5 to 37.5
4.2 to 5.2
Residuals, % 0
0 to 0.15