MakeItFrom.com
Menu (ESC)

C36000 Brass vs. AISI 334 Stainless Steel

C36000 brass belongs to the copper alloys classification, while AISI 334 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C36000 brass and the bottom bar is AISI 334 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 5.8 to 23
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
77
Shear Strength, MPa 210 to 310
360
Tensile Strength: Ultimate (UTS), MPa 330 to 530
540
Tensile Strength: Yield (Proof), MPa 140 to 260
190

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
1000
Melting Completion (Liquidus), °C 900
1410
Melting Onset (Solidus), °C 890
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Expansion, µm/m-K 21
16

Otherwise Unclassified Properties

Base Metal Price, % relative 23
22
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.6
4.1
Embodied Energy, MJ/kg 45
59
Embodied Water, L/kg 320
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 62
140
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 340
96
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 18
19
Strength to Weight: Bending, points 13 to 18
19
Thermal Shock Resistance, points 11 to 18
12

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 60 to 63
0
Iron (Fe), % 0 to 0.35
55.7 to 62.7
Lead (Pb), % 2.5 to 3.7
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
19 to 21
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 32.5 to 37.5
0
Residuals, % 0 to 0.5
0