MakeItFrom.com
Menu (ESC)

C36000 Brass vs. EN 2.4663 Nickel

C36000 brass belongs to the copper alloys classification, while EN 2.4663 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C36000 brass and the bottom bar is EN 2.4663 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 5.8 to 23
40
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 39
81
Shear Strength, MPa 210 to 310
540
Tensile Strength: Ultimate (UTS), MPa 330 to 530
780
Tensile Strength: Yield (Proof), MPa 140 to 260
310

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
1010
Melting Completion (Liquidus), °C 900
1430
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 380
450
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 29
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
75
Density, g/cm3 8.2
8.6
Embodied Carbon, kg CO2/kg material 2.6
11
Embodied Energy, MJ/kg 45
140
Embodied Water, L/kg 320
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 62
250
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 340
230
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 11 to 18
25
Strength to Weight: Bending, points 13 to 18
22
Thermal Diffusivity, mm2/s 37
3.5
Thermal Shock Resistance, points 11 to 18
22

Alloy Composition

Aluminum (Al), % 0
0.7 to 1.4
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
11 to 14
Copper (Cu), % 60 to 63
0 to 0.5
Iron (Fe), % 0 to 0.35
0 to 2.0
Lead (Pb), % 2.5 to 3.7
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
8.5 to 10
Nickel (Ni), % 0
48 to 59.6
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.2 to 0.6
Zinc (Zn), % 32.5 to 37.5
0
Residuals, % 0 to 0.5
0