MakeItFrom.com
Menu (ESC)

C36000 Brass vs. Nickel 725

C36000 brass belongs to the copper alloys classification, while nickel 725 belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C36000 brass and the bottom bar is nickel 725.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 5.8 to 23
34
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 39
78
Shear Strength, MPa 210 to 310
580
Tensile Strength: Ultimate (UTS), MPa 330 to 530
860
Tensile Strength: Yield (Proof), MPa 140 to 260
350

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 900
1340
Melting Onset (Solidus), °C 890
1270
Specific Heat Capacity, J/kg-K 380
440
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 29
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
75
Density, g/cm3 8.2
8.5
Embodied Carbon, kg CO2/kg material 2.6
13
Embodied Energy, MJ/kg 45
190
Embodied Water, L/kg 320
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 62
240
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 340
300
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 11 to 18
28
Strength to Weight: Bending, points 13 to 18
24
Thermal Shock Resistance, points 11 to 18
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22.5
Copper (Cu), % 60 to 63
0
Iron (Fe), % 0 to 0.35
2.3 to 15.3
Lead (Pb), % 2.5 to 3.7
0
Manganese (Mn), % 0
0 to 0.35
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0
55 to 59
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
1.0 to 1.7
Zinc (Zn), % 32.5 to 37.5
0
Residuals, % 0 to 0.5
0