MakeItFrom.com
Menu (ESC)

C36000 Brass vs. N08024 Nickel

C36000 brass belongs to the copper alloys classification, while N08024 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C36000 brass and the bottom bar is N08024 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 5.8 to 23
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
79
Shear Strength, MPa 210 to 310
410
Tensile Strength: Ultimate (UTS), MPa 330 to 530
620
Tensile Strength: Yield (Proof), MPa 140 to 260
270

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
990
Melting Completion (Liquidus), °C 900
1430
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 29
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
41
Density, g/cm3 8.2
8.2
Embodied Carbon, kg CO2/kg material 2.6
7.2
Embodied Energy, MJ/kg 45
99
Embodied Water, L/kg 320
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 62
170
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 340
180
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 18
21
Strength to Weight: Bending, points 13 to 18
20
Thermal Diffusivity, mm2/s 37
3.2
Thermal Shock Resistance, points 11 to 18
15

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22.5 to 25
Copper (Cu), % 60 to 63
0.5 to 1.5
Iron (Fe), % 0 to 0.35
26.6 to 38.4
Lead (Pb), % 2.5 to 3.7
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0
35 to 40
Niobium (Nb), % 0
0.15 to 0.35
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.035
Zinc (Zn), % 32.5 to 37.5
0
Residuals, % 0 to 0.5
0