MakeItFrom.com
Menu (ESC)

C36000 Brass vs. R56401 Titanium

C36000 brass belongs to the copper alloys classification, while R56401 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C36000 brass and the bottom bar is R56401 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 5.8 to 23
9.1
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 39
40
Shear Strength, MPa 210 to 310
560
Tensile Strength: Ultimate (UTS), MPa 330 to 530
940
Tensile Strength: Yield (Proof), MPa 140 to 260
850

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 120
340
Melting Completion (Liquidus), °C 900
1610
Melting Onset (Solidus), °C 890
1560
Specific Heat Capacity, J/kg-K 380
560
Thermal Conductivity, W/m-K 120
7.1
Thermal Expansion, µm/m-K 21
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 23
36
Density, g/cm3 8.2
4.5
Embodied Carbon, kg CO2/kg material 2.6
38
Embodied Energy, MJ/kg 45
610
Embodied Water, L/kg 320
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 62
83
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 340
3440
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 11 to 18
59
Strength to Weight: Bending, points 13 to 18
48
Thermal Diffusivity, mm2/s 37
2.9
Thermal Shock Resistance, points 11 to 18
67

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 60 to 63
0
Hydrogen (H), % 0
0 to 0.012
Iron (Fe), % 0 to 0.35
0 to 0.25
Lead (Pb), % 2.5 to 3.7
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Titanium (Ti), % 0
88.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 32.5 to 37.5
0
Residuals, % 0 to 0.5
0