MakeItFrom.com
Menu (ESC)

C36200 Brass vs. 240.0 Aluminum

C36200 brass belongs to the copper alloys classification, while 240.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C36200 brass and the bottom bar is 240.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
72
Elongation at Break, % 20 to 53
1.0
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 39
27
Tensile Strength: Ultimate (UTS), MPa 340 to 420
240
Tensile Strength: Yield (Proof), MPa 130 to 360
200

Thermal Properties

Latent Heat of Fusion, J/g 170
380
Maximum Temperature: Mechanical, °C 120
180
Melting Completion (Liquidus), °C 900
600
Melting Onset (Solidus), °C 890
520
Specific Heat Capacity, J/kg-K 380
860
Thermal Conductivity, W/m-K 120
96
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
23
Electrical Conductivity: Equal Weight (Specific), % IACS 28
65

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 8.2
3.2
Embodied Carbon, kg CO2/kg material 2.6
8.7
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 140
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 630
280
Stiffness to Weight: Axial, points 6.9
12
Stiffness to Weight: Bending, points 19
43
Strength to Weight: Axial, points 11 to 14
20
Strength to Weight: Bending, points 13 to 15
26
Thermal Diffusivity, mm2/s 37
35
Thermal Shock Resistance, points 11 to 14
11

Alloy Composition

Aluminum (Al), % 0
81.7 to 86.9
Copper (Cu), % 60 to 63
7.0 to 9.0
Iron (Fe), % 0 to 0.15
0 to 0.5
Lead (Pb), % 3.5 to 4.5
0
Magnesium (Mg), % 0
5.5 to 6.5
Manganese (Mn), % 0
0.3 to 0.7
Nickel (Ni), % 0
0.3 to 0.7
Silicon (Si), % 0
0 to 0.5
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 32.4 to 36.5
0 to 0.1
Residuals, % 0
0 to 0.15