MakeItFrom.com
Menu (ESC)

C36200 Brass vs. AISI 304L Stainless Steel

C36200 brass belongs to the copper alloys classification, while AISI 304L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C36200 brass and the bottom bar is AISI 304L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 20 to 53
6.7 to 46
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 62 to 78
79
Shear Modulus, GPa 39
77
Shear Strength, MPa 210 to 240
370 to 680
Tensile Strength: Ultimate (UTS), MPa 340 to 420
540 to 1160
Tensile Strength: Yield (Proof), MPa 130 to 360
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
540
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
16
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.1
Embodied Energy, MJ/kg 45
44
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 140
71 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 630
92 to 1900
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 14
19 to 41
Strength to Weight: Bending, points 13 to 15
19 to 31
Thermal Diffusivity, mm2/s 37
4.2
Thermal Shock Resistance, points 11 to 14
12 to 25

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 60 to 63
0
Iron (Fe), % 0 to 0.15
65 to 74
Lead (Pb), % 3.5 to 4.5
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 12
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 32.4 to 36.5
0