MakeItFrom.com
Menu (ESC)

C36200 Brass vs. Titanium 6-2-4-2

C36200 brass belongs to the copper alloys classification, while titanium 6-2-4-2 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C36200 brass and the bottom bar is titanium 6-2-4-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 20 to 53
8.6
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 39
40
Shear Strength, MPa 210 to 240
560
Tensile Strength: Ultimate (UTS), MPa 340 to 420
950
Tensile Strength: Yield (Proof), MPa 130 to 360
880

Thermal Properties

Latent Heat of Fusion, J/g 170
400
Maximum Temperature: Mechanical, °C 120
300
Melting Completion (Liquidus), °C 900
1590
Melting Onset (Solidus), °C 890
1540
Specific Heat Capacity, J/kg-K 380
540
Thermal Conductivity, W/m-K 120
6.9
Thermal Expansion, µm/m-K 21
9.5

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
0.9
Electrical Conductivity: Equal Weight (Specific), % IACS 28
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
42
Density, g/cm3 8.2
4.6
Embodied Carbon, kg CO2/kg material 2.6
32
Embodied Energy, MJ/kg 45
520
Embodied Water, L/kg 320
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 140
79
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 630
3640
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 19
34
Strength to Weight: Axial, points 11 to 14
57
Strength to Weight: Bending, points 13 to 15
46
Thermal Diffusivity, mm2/s 37
2.8
Thermal Shock Resistance, points 11 to 14
67

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0
0 to 0.050
Copper (Cu), % 60 to 63
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.15
0 to 0.25
Lead (Pb), % 3.5 to 4.5
0
Molybdenum (Mo), % 0
1.8 to 2.2
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Silicon (Si), % 0
0.060 to 0.12
Tin (Sn), % 0
1.8 to 2.2
Titanium (Ti), % 0
83.7 to 87.2
Zinc (Zn), % 32.4 to 36.5
0
Zirconium (Zr), % 0
3.6 to 4.4
Residuals, % 0
0 to 0.4