MakeItFrom.com
Menu (ESC)

C36200 Brass vs. C87200 Bronze

Both C36200 brass and C87200 bronze are copper alloys. They have 64% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C36200 brass and the bottom bar is C87200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 20 to 53
30
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 39
43
Tensile Strength: Ultimate (UTS), MPa 340 to 420
380
Tensile Strength: Yield (Proof), MPa 130 to 360
170

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Maximum Temperature: Mechanical, °C 120
200
Melting Completion (Liquidus), °C 900
970
Melting Onset (Solidus), °C 890
860
Specific Heat Capacity, J/kg-K 380
410
Thermal Conductivity, W/m-K 120
28
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 28
6.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
29
Density, g/cm3 8.2
8.6
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 45
44
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 140
93
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 630
130
Stiffness to Weight: Axial, points 6.9
7.4
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 11 to 14
12
Strength to Weight: Bending, points 13 to 15
14
Thermal Diffusivity, mm2/s 37
8.0
Thermal Shock Resistance, points 11 to 14
14

Alloy Composition

Aluminum (Al), % 0
0 to 1.5
Copper (Cu), % 60 to 63
89 to 99
Iron (Fe), % 0 to 0.15
0 to 2.5
Lead (Pb), % 3.5 to 4.5
0 to 0.5
Manganese (Mn), % 0
0 to 1.5
Phosphorus (P), % 0
0 to 0.5
Silicon (Si), % 0
1.0 to 5.0
Tin (Sn), % 0
0 to 1.0
Zinc (Zn), % 32.4 to 36.5
0 to 5.0