MakeItFrom.com
Menu (ESC)

C36200 Brass vs. N06025 Nickel

C36200 brass belongs to the copper alloys classification, while N06025 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C36200 brass and the bottom bar is N06025 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 20 to 53
32
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
76
Shear Strength, MPa 210 to 240
500
Tensile Strength: Ultimate (UTS), MPa 340 to 420
760
Tensile Strength: Yield (Proof), MPa 130 to 360
310

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
1000
Melting Completion (Liquidus), °C 900
1350
Melting Onset (Solidus), °C 890
1300
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 28
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
50
Density, g/cm3 8.2
8.2
Embodied Carbon, kg CO2/kg material 2.6
8.4
Embodied Energy, MJ/kg 45
120
Embodied Water, L/kg 320
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 140
190
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 630
240
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 14
26
Strength to Weight: Bending, points 13 to 15
22
Thermal Diffusivity, mm2/s 37
2.9
Thermal Shock Resistance, points 11 to 14
21

Alloy Composition

Aluminum (Al), % 0
1.8 to 2.4
Carbon (C), % 0
0.15 to 0.25
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 60 to 63
0 to 0.1
Iron (Fe), % 0 to 0.15
8.0 to 11
Lead (Pb), % 3.5 to 4.5
0
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0
59.2 to 65.9
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.1 to 0.2
Yttrium (Y), % 0
0.050 to 0.12
Zinc (Zn), % 32.4 to 36.5
0.010 to 0.1