MakeItFrom.com
Menu (ESC)

C36200 Brass vs. N06920 Nickel

C36200 brass belongs to the copper alloys classification, while N06920 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C36200 brass and the bottom bar is N06920 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 20 to 53
39
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
82
Shear Strength, MPa 210 to 240
500
Tensile Strength: Ultimate (UTS), MPa 340 to 420
730
Tensile Strength: Yield (Proof), MPa 130 to 360
270

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
990
Melting Completion (Liquidus), °C 900
1500
Melting Onset (Solidus), °C 890
1440
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 28
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
55
Density, g/cm3 8.2
8.6
Embodied Carbon, kg CO2/kg material 2.6
9.4
Embodied Energy, MJ/kg 45
130
Embodied Water, L/kg 320
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 140
230
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 630
180
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 11 to 14
24
Strength to Weight: Bending, points 13 to 15
21
Thermal Diffusivity, mm2/s 37
2.8
Thermal Shock Resistance, points 11 to 14
19

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 23
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 60 to 63
0
Iron (Fe), % 0 to 0.15
17 to 20
Lead (Pb), % 3.5 to 4.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
36.9 to 53.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 32.4 to 36.5
0