MakeItFrom.com
Menu (ESC)

C36500 Muntz Metal vs. 5083 Aluminum

C36500 Muntz Metal belongs to the copper alloys classification, while 5083 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C36500 Muntz Metal and the bottom bar is 5083 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
68
Elongation at Break, % 40
1.1 to 17
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 39
26
Shear Strength, MPa 270
170 to 220
Tensile Strength: Ultimate (UTS), MPa 400
290 to 390
Tensile Strength: Yield (Proof), MPa 160
110 to 340

Thermal Properties

Latent Heat of Fusion, J/g 170
400
Maximum Temperature: Mechanical, °C 120
190
Melting Completion (Liquidus), °C 900
640
Melting Onset (Solidus), °C 890
580
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
29
Electrical Conductivity: Equal Weight (Specific), % IACS 32
96

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.9
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 320
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
4.2 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 120
95 to 860
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
50
Strength to Weight: Axial, points 14
29 to 40
Strength to Weight: Bending, points 15
36 to 44
Thermal Diffusivity, mm2/s 40
48
Thermal Shock Resistance, points 13
12 to 17

Alloy Composition

Aluminum (Al), % 0
92.4 to 95.6
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 58 to 61
0 to 0.1
Iron (Fe), % 0 to 0.15
0 to 0.4
Lead (Pb), % 0.25 to 0.7
0
Magnesium (Mg), % 0
4.0 to 4.9
Manganese (Mn), % 0
0.4 to 1.0
Silicon (Si), % 0
0 to 0.4
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 37.5 to 41.8
0 to 0.25
Residuals, % 0
0 to 0.15