MakeItFrom.com
Menu (ESC)

C36500 Muntz Metal vs. Nickel 718

C36500 Muntz Metal belongs to the copper alloys classification, while nickel 718 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C36500 Muntz Metal and the bottom bar is nickel 718.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 40
12 to 50
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 39
75
Shear Strength, MPa 270
660 to 950
Tensile Strength: Ultimate (UTS), MPa 400
930 to 1530
Tensile Strength: Yield (Proof), MPa 160
510 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 900
1340
Melting Onset (Solidus), °C 890
1260
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 32
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
75
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 2.7
13
Embodied Energy, MJ/kg 46
190
Embodied Water, L/kg 320
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
140 to 390
Resilience: Unit (Modulus of Resilience), kJ/m3 120
660 to 4560
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 14
31 to 51
Strength to Weight: Bending, points 15
25 to 35
Thermal Diffusivity, mm2/s 40
3.0
Thermal Shock Resistance, points 13
27 to 44

Alloy Composition

Aluminum (Al), % 0
0.2 to 0.8
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 58 to 61
0 to 0.3
Iron (Fe), % 0 to 0.15
11.1 to 24.6
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0
50 to 55
Niobium (Nb), % 0
4.8 to 5.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0.65 to 1.2
Zinc (Zn), % 37.5 to 41.8
0
Residuals, % 0 to 0.4
0