MakeItFrom.com
Menu (ESC)

C36500 Muntz Metal vs. C92200 Bronze

Both C36500 Muntz Metal and C92200 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 64% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C36500 Muntz Metal and the bottom bar is C92200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 40
25
Poisson's Ratio 0.3
0.34
Rockwell B Hardness 45
65
Shear Modulus, GPa 39
41
Tensile Strength: Ultimate (UTS), MPa 400
280
Tensile Strength: Yield (Proof), MPa 160
140

Thermal Properties

Latent Heat of Fusion, J/g 170
190
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 900
990
Melting Onset (Solidus), °C 890
830
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 120
70
Thermal Expansion, µm/m-K 21
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
14
Electrical Conductivity: Equal Weight (Specific), % IACS 32
14

Otherwise Unclassified Properties

Base Metal Price, % relative 23
32
Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 2.7
3.2
Embodied Energy, MJ/kg 46
52
Embodied Water, L/kg 320
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
58
Resilience: Unit (Modulus of Resilience), kJ/m3 120
87
Stiffness to Weight: Axial, points 7.2
6.9
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 14
8.9
Strength to Weight: Bending, points 15
11
Thermal Diffusivity, mm2/s 40
21
Thermal Shock Resistance, points 13
9.9

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 58 to 61
86 to 90
Iron (Fe), % 0 to 0.15
0 to 0.25
Lead (Pb), % 0.25 to 0.7
1.0 to 2.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.25
5.5 to 6.5
Zinc (Zn), % 37.5 to 41.8
3.0 to 5.0
Residuals, % 0
0 to 0.7