MakeItFrom.com
Menu (ESC)

C36500 Muntz Metal vs. C92900 Bronze

Both C36500 Muntz Metal and C92900 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 61% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C36500 Muntz Metal and the bottom bar is C92900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 40
9.1
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 39
40
Tensile Strength: Ultimate (UTS), MPa 400
350
Tensile Strength: Yield (Proof), MPa 160
190

Thermal Properties

Latent Heat of Fusion, J/g 170
190
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 900
1030
Melting Onset (Solidus), °C 890
860
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 120
58
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 32
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
35
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 2.7
3.8
Embodied Energy, MJ/kg 46
61
Embodied Water, L/kg 320
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
27
Resilience: Unit (Modulus of Resilience), kJ/m3 120
170
Stiffness to Weight: Axial, points 7.2
6.8
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 14
11
Strength to Weight: Bending, points 15
13
Thermal Diffusivity, mm2/s 40
18
Thermal Shock Resistance, points 13
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 58 to 61
82 to 86
Iron (Fe), % 0 to 0.15
0 to 0.2
Lead (Pb), % 0.25 to 0.7
2.0 to 3.2
Nickel (Ni), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.25
9.0 to 11
Zinc (Zn), % 37.5 to 41.8
0 to 0.25
Residuals, % 0
0 to 0.7