MakeItFrom.com
Menu (ESC)

C36500 Muntz Metal vs. N08810 Stainless Steel

C36500 Muntz Metal belongs to the copper alloys classification, while N08810 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C36500 Muntz Metal and the bottom bar is N08810 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 40
33
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 39
77
Shear Strength, MPa 270
340
Tensile Strength: Ultimate (UTS), MPa 400
520
Tensile Strength: Yield (Proof), MPa 160
200

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 900
1400
Melting Onset (Solidus), °C 890
1350
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 21
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 32
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
30
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 2.7
5.3
Embodied Energy, MJ/kg 46
76
Embodied Water, L/kg 320
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
140
Resilience: Unit (Modulus of Resilience), kJ/m3 120
100
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 14
18
Strength to Weight: Bending, points 15
18
Thermal Diffusivity, mm2/s 40
3.0
Thermal Shock Resistance, points 13
13

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 58 to 61
0 to 0.75
Iron (Fe), % 0 to 0.15
39.5 to 50.7
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
30 to 35
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 37.5 to 41.8
0
Residuals, % 0 to 0.4
0