MakeItFrom.com
Menu (ESC)

C36500 Muntz Metal vs. S41003 Stainless Steel

C36500 Muntz Metal belongs to the copper alloys classification, while S41003 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C36500 Muntz Metal and the bottom bar is S41003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 40
21
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 39
76
Shear Strength, MPa 270
320
Tensile Strength: Ultimate (UTS), MPa 400
520
Tensile Strength: Yield (Proof), MPa 160
310

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
720
Melting Completion (Liquidus), °C 900
1440
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
27
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 32
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
7.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.9
Embodied Energy, MJ/kg 46
27
Embodied Water, L/kg 320
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
92
Resilience: Unit (Modulus of Resilience), kJ/m3 120
240
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 14
19
Strength to Weight: Bending, points 15
18
Thermal Diffusivity, mm2/s 40
7.2
Thermal Shock Resistance, points 13
19

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 58 to 61
0
Iron (Fe), % 0 to 0.15
83.4 to 89.5
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
0 to 1.5
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 37.5 to 41.8
0
Residuals, % 0 to 0.4
0