MakeItFrom.com
Menu (ESC)

C37000 Muntz Metal vs. C85700 Brass

Both C37000 Muntz Metal and C85700 brass are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a very high 98% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C37000 Muntz Metal and the bottom bar is C85700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 40
17
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 39
40
Tensile Strength: Ultimate (UTS), MPa 400
310
Tensile Strength: Yield (Proof), MPa 160
110

Thermal Properties

Latent Heat of Fusion, J/g 170
170
Maximum Temperature: Mechanical, °C 120
120
Melting Completion (Liquidus), °C 900
940
Melting Onset (Solidus), °C 890
910
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 120
84
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
22
Electrical Conductivity: Equal Weight (Specific), % IACS 30
25

Otherwise Unclassified Properties

Base Metal Price, % relative 23
24
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 45
47
Embodied Water, L/kg 320
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
41
Resilience: Unit (Modulus of Resilience), kJ/m3 120
59
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 14
11
Strength to Weight: Bending, points 15
13
Thermal Diffusivity, mm2/s 39
27
Thermal Shock Resistance, points 13
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.8
Copper (Cu), % 59 to 62
58 to 64
Iron (Fe), % 0 to 0.15
0 to 0.7
Lead (Pb), % 0.8 to 1.5
0.8 to 1.5
Nickel (Ni), % 0
0 to 1.0
Silicon (Si), % 0
0 to 0.050
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 36 to 40.2
32 to 40
Residuals, % 0
0 to 1.3