MakeItFrom.com
Menu (ESC)

C37000 Muntz Metal vs. S15500 Stainless Steel

C37000 Muntz Metal belongs to the copper alloys classification, while S15500 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C37000 Muntz Metal and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 40
6.8 to 16
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
75
Shear Strength, MPa 270
540 to 870
Tensile Strength: Ultimate (UTS), MPa 400
890 to 1490
Tensile Strength: Yield (Proof), MPa 160
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
820
Melting Completion (Liquidus), °C 900
1430
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 30
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 45
39
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 120
890 to 4460
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14
32 to 53
Strength to Weight: Bending, points 15
26 to 37
Thermal Diffusivity, mm2/s 39
4.6
Thermal Shock Resistance, points 13
30 to 50

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
14 to 15.5
Copper (Cu), % 59 to 62
2.5 to 4.5
Iron (Fe), % 0 to 0.15
71.9 to 79.9
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 36 to 40.2
0
Residuals, % 0 to 0.4
0