MakeItFrom.com
Menu (ESC)

C37100 Brass vs. 7021 Aluminum

C37100 brass belongs to the copper alloys classification, while 7021 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C37100 brass and the bottom bar is 7021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
69
Elongation at Break, % 8.0 to 40
9.4
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
26
Shear Strength, MPa 260 to 300
270
Tensile Strength: Ultimate (UTS), MPa 370 to 520
460
Tensile Strength: Yield (Proof), MPa 150 to 390
390

Thermal Properties

Latent Heat of Fusion, J/g 170
380
Maximum Temperature: Mechanical, °C 120
200
Melting Completion (Liquidus), °C 900
630
Melting Onset (Solidus), °C 890
510
Specific Heat Capacity, J/kg-K 380
870
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
38
Electrical Conductivity: Equal Weight (Specific), % IACS 30
120

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 8.0
2.9
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 120
41
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 750
1110
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
47
Strength to Weight: Axial, points 13 to 18
44
Strength to Weight: Bending, points 14 to 18
45
Thermal Diffusivity, mm2/s 39
59
Thermal Shock Resistance, points 12 to 17
20

Alloy Composition

Aluminum (Al), % 0
90.7 to 93.7
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 58 to 62
0 to 0.25
Iron (Fe), % 0 to 0.15
0 to 0.4
Lead (Pb), % 0.6 to 1.2
0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.25
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 36.3 to 41.4
5.0 to 6.0
Zirconium (Zr), % 0
0.080 to 0.18
Residuals, % 0
0 to 0.15