MakeItFrom.com
Menu (ESC)

C37100 Brass vs. 707.0 Aluminum

C37100 brass belongs to the copper alloys classification, while 707.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C37100 brass and the bottom bar is 707.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
70
Elongation at Break, % 8.0 to 40
1.7 to 3.4
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 370 to 520
270 to 300
Tensile Strength: Yield (Proof), MPa 150 to 390
170 to 250

Thermal Properties

Latent Heat of Fusion, J/g 170
380
Maximum Temperature: Mechanical, °C 120
180
Melting Completion (Liquidus), °C 900
630
Melting Onset (Solidus), °C 890
600
Specific Heat Capacity, J/kg-K 380
880
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
37
Electrical Conductivity: Equal Weight (Specific), % IACS 30
110

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 8.0
2.9
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 120
4.3 to 8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 750
210 to 430
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
47
Strength to Weight: Axial, points 13 to 18
26 to 29
Strength to Weight: Bending, points 14 to 18
32 to 34
Thermal Diffusivity, mm2/s 39
58
Thermal Shock Resistance, points 12 to 17
12 to 13

Alloy Composition

Aluminum (Al), % 0
90.5 to 93.6
Chromium (Cr), % 0
0.2 to 0.4
Copper (Cu), % 58 to 62
0 to 0.2
Iron (Fe), % 0 to 0.15
0 to 0.8
Lead (Pb), % 0.6 to 1.2
0
Magnesium (Mg), % 0
1.8 to 2.4
Manganese (Mn), % 0
0.4 to 0.6
Silicon (Si), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 36.3 to 41.4
4.0 to 4.5
Residuals, % 0
0 to 0.15