MakeItFrom.com
Menu (ESC)

C37100 Brass vs. 8090 Aluminum

C37100 brass belongs to the copper alloys classification, while 8090 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C37100 brass and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
67
Elongation at Break, % 8.0 to 40
3.5 to 13
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
25
Tensile Strength: Ultimate (UTS), MPa 370 to 520
340 to 490
Tensile Strength: Yield (Proof), MPa 150 to 390
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 170
400
Maximum Temperature: Mechanical, °C 120
190
Melting Completion (Liquidus), °C 900
660
Melting Onset (Solidus), °C 890
600
Specific Heat Capacity, J/kg-K 380
960
Thermal Conductivity, W/m-K 120
95 to 160
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
20
Electrical Conductivity: Equal Weight (Specific), % IACS 30
66

Otherwise Unclassified Properties

Base Metal Price, % relative 23
18
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.6
Embodied Energy, MJ/kg 45
170
Embodied Water, L/kg 320
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 120
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 750
340 to 1330
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
50
Strength to Weight: Axial, points 13 to 18
34 to 49
Strength to Weight: Bending, points 14 to 18
39 to 50
Thermal Diffusivity, mm2/s 39
36 to 60
Thermal Shock Resistance, points 12 to 17
15 to 22

Alloy Composition

Aluminum (Al), % 0
93 to 98.4
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 58 to 62
1.0 to 1.6
Iron (Fe), % 0 to 0.15
0 to 0.3
Lead (Pb), % 0.6 to 1.2
0
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 0
0.6 to 1.3
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 36.3 to 41.4
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.16
Residuals, % 0
0 to 0.15