MakeItFrom.com
Menu (ESC)

C37100 Brass vs. AWS ER100S-1

C37100 brass belongs to the copper alloys classification, while AWS ER100S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C37100 brass and the bottom bar is AWS ER100S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 8.0 to 40
18
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 370 to 520
770
Tensile Strength: Yield (Proof), MPa 150 to 390
700

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Melting Completion (Liquidus), °C 900
1460
Melting Onset (Solidus), °C 890
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
49
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 30
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
3.6
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.8
Embodied Energy, MJ/kg 45
24
Embodied Water, L/kg 320
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 120
130
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 750
1290
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 13 to 18
27
Strength to Weight: Bending, points 14 to 18
24
Thermal Diffusivity, mm2/s 39
13
Thermal Shock Resistance, points 12 to 17
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 58 to 62
0 to 0.25
Iron (Fe), % 0 to 0.15
93.5 to 96.9
Lead (Pb), % 0.6 to 1.2
0
Manganese (Mn), % 0
1.3 to 1.8
Molybdenum (Mo), % 0
0.25 to 0.55
Nickel (Ni), % 0
1.4 to 2.1
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0.2 to 0.55
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 36.3 to 41.4
0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5