MakeItFrom.com
Menu (ESC)

C37100 Brass vs. EN 1.4419 Stainless Steel

C37100 brass belongs to the copper alloys classification, while EN 1.4419 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C37100 brass and the bottom bar is EN 1.4419 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 8.0 to 40
11 to 17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 260 to 300
410 to 950
Tensile Strength: Ultimate (UTS), MPa 370 to 520
660 to 1590
Tensile Strength: Yield (Proof), MPa 150 to 390
370 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
790
Melting Completion (Liquidus), °C 900
1440
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
30
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 30
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
8.0
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 45
30
Embodied Water, L/kg 320
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 120
95 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 750
350 to 3920
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13 to 18
24 to 57
Strength to Weight: Bending, points 14 to 18
22 to 39
Thermal Diffusivity, mm2/s 39
8.1
Thermal Shock Resistance, points 12 to 17
23 to 55

Alloy Composition

Carbon (C), % 0
0.36 to 0.42
Chromium (Cr), % 0
13 to 14.5
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.15
82 to 86
Lead (Pb), % 0.6 to 1.2
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.6 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 36.3 to 41.4
0
Residuals, % 0 to 0.4
0