MakeItFrom.com
Menu (ESC)

C37100 Brass vs. EN 2.4856 Nickel

C37100 brass belongs to the copper alloys classification, while EN 2.4856 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C37100 brass and the bottom bar is EN 2.4856 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 8.0 to 40
28
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
79
Shear Strength, MPa 260 to 300
570
Tensile Strength: Ultimate (UTS), MPa 370 to 520
880
Tensile Strength: Yield (Proof), MPa 150 to 390
430

Thermal Properties

Latent Heat of Fusion, J/g 170
330
Maximum Temperature: Mechanical, °C 120
1000
Melting Completion (Liquidus), °C 900
1480
Melting Onset (Solidus), °C 890
1430
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 120
10
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 30
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
80
Density, g/cm3 8.0
8.6
Embodied Carbon, kg CO2/kg material 2.7
14
Embodied Energy, MJ/kg 45
190
Embodied Water, L/kg 320
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 120
200
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 750
440
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 13 to 18
28
Strength to Weight: Bending, points 14 to 18
24
Thermal Diffusivity, mm2/s 39
2.7
Thermal Shock Resistance, points 12 to 17
29

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 58 to 62
0 to 0.5
Iron (Fe), % 0 to 0.15
0 to 5.0
Lead (Pb), % 0.6 to 1.2
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
58 to 68.8
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.4
Zinc (Zn), % 36.3 to 41.4
0
Residuals, % 0 to 0.4
0