MakeItFrom.com
Menu (ESC)

C37100 Brass vs. Grade 28 Titanium

C37100 brass belongs to the copper alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C37100 brass and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 8.0 to 40
11 to 17
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
40
Shear Strength, MPa 260 to 300
420 to 590
Tensile Strength: Ultimate (UTS), MPa 370 to 520
690 to 980
Tensile Strength: Yield (Proof), MPa 150 to 390
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 120
330
Melting Completion (Liquidus), °C 900
1640
Melting Onset (Solidus), °C 890
1590
Specific Heat Capacity, J/kg-K 380
550
Thermal Conductivity, W/m-K 120
8.3
Thermal Expansion, µm/m-K 21
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 30
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
36
Density, g/cm3 8.0
4.5
Embodied Carbon, kg CO2/kg material 2.7
37
Embodied Energy, MJ/kg 45
600
Embodied Water, L/kg 320
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 120
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 750
1370 to 3100
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 13 to 18
43 to 61
Strength to Weight: Bending, points 14 to 18
39 to 49
Thermal Diffusivity, mm2/s 39
3.4
Thermal Shock Resistance, points 12 to 17
47 to 66

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 58 to 62
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.15
0 to 0.25
Lead (Pb), % 0.6 to 1.2
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Ruthenium (Ru), % 0
0.080 to 0.14
Titanium (Ti), % 0
92.4 to 95.4
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 36.3 to 41.4
0
Residuals, % 0
0 to 0.4