MakeItFrom.com
Menu (ESC)

C37100 Brass vs. S36200 Stainless Steel

C37100 brass belongs to the copper alloys classification, while S36200 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C37100 brass and the bottom bar is S36200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 8.0 to 40
3.4 to 4.6
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 260 to 300
680 to 810
Tensile Strength: Ultimate (UTS), MPa 370 to 520
1180 to 1410
Tensile Strength: Yield (Proof), MPa 150 to 390
960 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
820
Melting Completion (Liquidus), °C 900
1440
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 30
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 45
40
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 120
46 to 51
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 750
2380 to 3930
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13 to 18
42 to 50
Strength to Weight: Bending, points 14 to 18
32 to 36
Thermal Diffusivity, mm2/s 39
4.3
Thermal Shock Resistance, points 12 to 17
40 to 48

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 14.5
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.15
75.4 to 79.5
Lead (Pb), % 0.6 to 1.2
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 0
6.5 to 7.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.6 to 0.9
Zinc (Zn), % 36.3 to 41.4
0
Residuals, % 0 to 0.4
0