MakeItFrom.com
Menu (ESC)

C37700 Brass vs. AISI 409Cb Stainless Steel

C37700 brass belongs to the copper alloys classification, while AISI 409Cb stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C37700 brass and the bottom bar is AISI 409Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 40
24
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
75
Shear Strength, MPa 270
270
Tensile Strength: Ultimate (UTS), MPa 400
420
Tensile Strength: Yield (Proof), MPa 160
200

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
710
Melting Completion (Liquidus), °C 890
1450
Melting Onset (Solidus), °C 880
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 30
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
8.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.2
Embodied Energy, MJ/kg 45
31
Embodied Water, L/kg 320
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
83
Resilience: Unit (Modulus of Resilience), kJ/m3 120
100
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14
15
Strength to Weight: Bending, points 15
16
Thermal Diffusivity, mm2/s 39
6.7
Thermal Shock Resistance, points 13
15

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 58 to 61
0
Iron (Fe), % 0 to 0.3
84.9 to 89.5
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 35.7 to 40.5
0
Residuals, % 0 to 0.5
0