MakeItFrom.com
Menu (ESC)

C37700 Brass vs. C82400 Copper

Both C37700 brass and C82400 copper are copper alloys. They have 60% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C37700 brass and the bottom bar is C82400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 40
1.0 to 20
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 39
45
Tensile Strength: Ultimate (UTS), MPa 400
500 to 1030
Tensile Strength: Yield (Proof), MPa 160
260 to 970

Thermal Properties

Latent Heat of Fusion, J/g 170
230
Maximum Temperature: Mechanical, °C 120
270
Melting Completion (Liquidus), °C 890
1000
Melting Onset (Solidus), °C 880
900
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
25
Electrical Conductivity: Equal Weight (Specific), % IACS 30
26

Otherwise Unclassified Properties

Density, g/cm3 8.1
8.8
Embodied Carbon, kg CO2/kg material 2.6
8.9
Embodied Energy, MJ/kg 45
140
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
10 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 120
270 to 3870
Stiffness to Weight: Axial, points 7.1
7.6
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 14
16 to 33
Strength to Weight: Bending, points 15
16 to 26
Thermal Diffusivity, mm2/s 39
39
Thermal Shock Resistance, points 13
17 to 36

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.6 to 1.9
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.2 to 0.65
Copper (Cu), % 58 to 61
96 to 98.2
Iron (Fe), % 0 to 0.3
0 to 0.2
Lead (Pb), % 1.5 to 2.5
0 to 0.020
Nickel (Ni), % 0
0 to 0.2
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 35.7 to 40.5
0 to 0.1
Residuals, % 0
0 to 0.5