MakeItFrom.com
Menu (ESC)

C37700 Brass vs. C87800 Brass

Both C37700 brass and C87800 brass are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 74% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C37700 brass and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 40
25
Poisson's Ratio 0.31
0.33
Rockwell B Hardness 45
86
Shear Modulus, GPa 39
42
Tensile Strength: Ultimate (UTS), MPa 400
590
Tensile Strength: Yield (Proof), MPa 160
350

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 890
920
Melting Onset (Solidus), °C 880
820
Specific Heat Capacity, J/kg-K 380
410
Thermal Conductivity, W/m-K 120
28
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 30
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
27
Density, g/cm3 8.1
8.3
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 45
44
Embodied Water, L/kg 320
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
130
Resilience: Unit (Modulus of Resilience), kJ/m3 120
540
Stiffness to Weight: Axial, points 7.1
7.4
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 14
20
Strength to Weight: Bending, points 15
19
Thermal Diffusivity, mm2/s 39
8.3
Thermal Shock Resistance, points 13
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Copper (Cu), % 58 to 61
80 to 84.2
Iron (Fe), % 0 to 0.3
0 to 0.15
Lead (Pb), % 1.5 to 2.5
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
3.8 to 4.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 35.7 to 40.5
12 to 16
Residuals, % 0
0 to 0.5