MakeItFrom.com
Menu (ESC)

C37700 Brass vs. S17400 Stainless Steel

C37700 brass belongs to the copper alloys classification, while S17400 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C37700 brass and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 40
11 to 21
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
75
Shear Strength, MPa 270
570 to 830
Tensile Strength: Ultimate (UTS), MPa 400
910 to 1390
Tensile Strength: Yield (Proof), MPa 160
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
850
Melting Completion (Liquidus), °C 890
1440
Melting Onset (Solidus), °C 880
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 30
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
14
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 45
39
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 120
880 to 4060
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14
32 to 49
Strength to Weight: Bending, points 15
27 to 35
Thermal Diffusivity, mm2/s 39
4.5
Thermal Shock Resistance, points 13
30 to 46

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 58 to 61
3.0 to 5.0
Iron (Fe), % 0 to 0.3
70.4 to 78.9
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 35.7 to 40.5
0
Residuals, % 0 to 0.5
0