MakeItFrom.com
Menu (ESC)

C37700 Brass vs. S32202 Stainless Steel

C37700 brass belongs to the copper alloys classification, while S32202 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C37700 brass and the bottom bar is S32202 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 40
34
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 39
79
Shear Strength, MPa 270
490
Tensile Strength: Ultimate (UTS), MPa 400
730
Tensile Strength: Yield (Proof), MPa 160
510

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
1030
Melting Completion (Liquidus), °C 890
1430
Melting Onset (Solidus), °C 880
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 30
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 45
37
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
220
Resilience: Unit (Modulus of Resilience), kJ/m3 120
650
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14
27
Strength to Weight: Bending, points 15
24
Thermal Diffusivity, mm2/s 39
4.0
Thermal Shock Resistance, points 13
20

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
21.5 to 24
Copper (Cu), % 58 to 61
0
Iron (Fe), % 0 to 0.3
69.4 to 77.3
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.45
Nickel (Ni), % 0
1.0 to 2.8
Nitrogen (N), % 0
0.18 to 0.26
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 35.7 to 40.5
0
Residuals, % 0 to 0.5
0