MakeItFrom.com
Menu (ESC)

C38000 Brass vs. AISI 347 Stainless Steel

C38000 brass belongs to the copper alloys classification, while AISI 347 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C38000 brass and the bottom bar is AISI 347 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17
34 to 46
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
77
Shear Strength, MPa 230
430 to 460
Tensile Strength: Ultimate (UTS), MPa 380
610 to 690
Tensile Strength: Yield (Proof), MPa 120
240 to 350

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 110
870
Melting Completion (Liquidus), °C 800
1430
Melting Onset (Solidus), °C 760
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 21
17

Otherwise Unclassified Properties

Base Metal Price, % relative 22
19
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.6
Embodied Energy, MJ/kg 46
52
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 50
190 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 74
150 to 310
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
22 to 25
Strength to Weight: Bending, points 14
20 to 22
Thermal Diffusivity, mm2/s 37
4.3
Thermal Shock Resistance, points 13
13 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 55 to 60
0
Iron (Fe), % 0 to 0.35
64.1 to 74
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
9.0 to 13
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 35.9 to 43.5
0
Residuals, % 0 to 0.5
0