MakeItFrom.com
Menu (ESC)

C38000 Brass vs. Grade M35-2 Nickel

C38000 brass belongs to the copper alloys classification, while grade M35-2 nickel belongs to the nickel alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C38000 brass and the bottom bar is grade M35-2 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
160
Elongation at Break, % 17
28
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 39
62
Tensile Strength: Ultimate (UTS), MPa 380
500
Tensile Strength: Yield (Proof), MPa 120
230

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 110
900
Melting Completion (Liquidus), °C 800
1280
Melting Onset (Solidus), °C 760
1230
Specific Heat Capacity, J/kg-K 380
430
Thermal Conductivity, W/m-K 110
22
Thermal Expansion, µm/m-K 21
13

Otherwise Unclassified Properties

Base Metal Price, % relative 22
55
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 2.7
8.1
Embodied Energy, MJ/kg 46
110
Embodied Water, L/kg 330
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 50
120
Resilience: Unit (Modulus of Resilience), kJ/m3 74
170
Stiffness to Weight: Axial, points 7.1
10
Stiffness to Weight: Bending, points 19
21
Strength to Weight: Axial, points 13
16
Strength to Weight: Bending, points 14
16
Thermal Diffusivity, mm2/s 37
5.7
Thermal Shock Resistance, points 13
17

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.35
Copper (Cu), % 55 to 60
26 to 33
Iron (Fe), % 0 to 0.35
0 to 3.5
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
59.1 to 74
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 35.9 to 43.5
0
Residuals, % 0 to 0.5
0