MakeItFrom.com
Menu (ESC)

C38000 Brass vs. Low-oxygen Zirconium

C38000 brass belongs to the copper alloys classification, while low-oxygen zirconium belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C38000 brass and the bottom bar is low-oxygen zirconium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
98
Elongation at Break, % 17
23
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 39
37
Tensile Strength: Ultimate (UTS), MPa 380
330
Tensile Strength: Yield (Proof), MPa 120
270

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Specific Heat Capacity, J/kg-K 380
270
Thermal Conductivity, W/m-K 110
22
Thermal Expansion, µm/m-K 21
5.7

Otherwise Unclassified Properties

Density, g/cm3 8.0
6.7
Embodied Water, L/kg 330
450

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 50
70
Resilience: Unit (Modulus of Resilience), kJ/m3 74
370
Stiffness to Weight: Axial, points 7.1
8.1
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 13
14
Strength to Weight: Bending, points 14
16
Thermal Diffusivity, mm2/s 37
12
Thermal Shock Resistance, points 13
42

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 55 to 60
0
Hafnium (Hf), % 0
0 to 4.5
Hydrogen (H), % 0
0 to 0.0050
Iron (Fe), % 0 to 0.35
0 to 0.2
Lead (Pb), % 1.5 to 2.5
0
Nitrogen (N), % 0
0 to 0.025
Oxygen (O), % 0
0 to 0.1
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 35.9 to 43.5
0
Zirconium (Zr), % 0
94.7 to 100
Residuals, % 0 to 0.5
0