MakeItFrom.com
Menu (ESC)

C38000 Brass vs. C61800 Bronze

Both C38000 brass and C61800 bronze are copper alloys. They have 58% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C38000 brass and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 17
26
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 39
44
Shear Strength, MPa 230
310
Tensile Strength: Ultimate (UTS), MPa 380
740
Tensile Strength: Yield (Proof), MPa 120
310

Thermal Properties

Latent Heat of Fusion, J/g 170
230
Maximum Temperature: Mechanical, °C 110
220
Melting Completion (Liquidus), °C 800
1050
Melting Onset (Solidus), °C 760
1040
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 110
64
Thermal Expansion, µm/m-K 21
18

Otherwise Unclassified Properties

Base Metal Price, % relative 22
28
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 46
52
Embodied Water, L/kg 330
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 50
150
Resilience: Unit (Modulus of Resilience), kJ/m3 74
420
Stiffness to Weight: Axial, points 7.1
7.5
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 13
25
Strength to Weight: Bending, points 14
22
Thermal Diffusivity, mm2/s 37
18
Thermal Shock Resistance, points 13
26

Alloy Composition

Aluminum (Al), % 0 to 0.5
8.5 to 11
Copper (Cu), % 55 to 60
86.9 to 91
Iron (Fe), % 0 to 0.35
0.5 to 1.5
Lead (Pb), % 1.5 to 2.5
0 to 0.020
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 35.9 to 43.5
0 to 0.020
Residuals, % 0
0 to 0.5