MakeItFrom.com
Menu (ESC)

C38500 Bronze vs. C95820 Bronze

Both C38500 bronze and C95820 bronze are copper alloys. They have 58% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C38500 bronze and the bottom bar is C95820 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 17
15
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 37
44
Tensile Strength: Ultimate (UTS), MPa 370
730
Tensile Strength: Yield (Proof), MPa 130
310

Thermal Properties

Latent Heat of Fusion, J/g 160
230
Maximum Temperature: Mechanical, °C 110
230
Melting Completion (Liquidus), °C 890
1080
Melting Onset (Solidus), °C 880
1020
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 120
38
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 31
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 22
29
Density, g/cm3 8.1
8.3
Embodied Carbon, kg CO2/kg material 2.6
3.5
Embodied Energy, MJ/kg 45
56
Embodied Water, L/kg 320
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
86
Resilience: Unit (Modulus of Resilience), kJ/m3 78
400
Stiffness to Weight: Axial, points 7.0
8.0
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 13
24
Strength to Weight: Bending, points 14
22
Thermal Diffusivity, mm2/s 40
11
Thermal Shock Resistance, points 12
25

Alloy Composition

Aluminum (Al), % 0
9.0 to 10
Copper (Cu), % 55 to 59
77.5 to 82.5
Iron (Fe), % 0 to 0.35
4.0 to 5.0
Lead (Pb), % 2.5 to 3.5
0 to 0.020
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
4.5 to 5.8
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0
0 to 0.020
Zinc (Zn), % 36.7 to 42.5
0 to 0.2
Residuals, % 0
0 to 0.8