MakeItFrom.com
Menu (ESC)

C38500 Bronze vs. S13800 Stainless Steel

C38500 bronze belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C38500 bronze and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17
11 to 18
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 37
77
Shear Strength, MPa 230
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 370
980 to 1730
Tensile Strength: Yield (Proof), MPa 130
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 160
280
Maximum Temperature: Mechanical, °C 110
810
Melting Completion (Liquidus), °C 890
1450
Melting Onset (Solidus), °C 880
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 22
15
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 45
46
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 78
1090 to 5490
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
35 to 61
Strength to Weight: Bending, points 14
28 to 41
Thermal Diffusivity, mm2/s 40
4.3
Thermal Shock Resistance, points 12
33 to 58

Alloy Composition

Aluminum (Al), % 0
0.9 to 1.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 55 to 59
0
Iron (Fe), % 0 to 0.35
73.6 to 77.3
Lead (Pb), % 2.5 to 3.5
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Zinc (Zn), % 36.7 to 42.5
0
Residuals, % 0 to 0.5
0